Standard vs. Quiet Sump Pump Check Valve
Written by webtechs

Standard vs. Quiet Sump Pump Check Valve

It’s difficult to perceive the difference between a Standard Check Valve and a Quiet Check Valve, but it’s easy to grasp the distinction because it’s in the name. A Standard Check Valve is placed if you hear a loud noise whenever the pump stops. This noise is the check valve closing, which causes a slamming sensation as the water reverses direction in the discharge pipe after the pump stops. If you have never noticed it, you probably have a Quiet Check Valve.

Let’s take it a step further and compare the advantages of installing a Standard Check Valve with a Quiet Check Valve, which will make it easier for you to determine what is ideal for your home.

What is a standard check valve for a sump pump?

A Standard Check Valve safeguards your sump and sewage pump installations against backflow. The angled seat reduces the distance the flapper must travel from the open to closed position. When closing, significantly reduce the force with which the flapper touches the seat. The tilted seat design reduces the flapper’s travel distance, hence reducing flow reversal, noise, and possibly damaging hydraulic shock (water hammer). This, combined with corrosion-resistant non-metallic components, produces a durable and dependable valve.

The graphic below depicts the closing action of gravity. Clearly, there will be a flow reversal when the pump stops, until the poppet reaches its fully closed position.

Definition of a Quiet Sump Pump Verify Valves?

When ultra-quiet operation is necessary, a Quiet Check Valve is an excellent option. Quiet Check Valves are identical to ordinary check valves, with the addition of a spring-loaded hinged flapper mechanism that compels the flapper to fully close against fluid flow when the pump is turned off. This quick closing motion against pressure eliminates noise caused by hydraulic shock before flow reversal may occur (water hammer).

The spring-assisted closing action prevents flow reversal when the pump is turned off. The poppet moves to its fully closed position before to the complete cessation of water flow.

It boils down to individual preference

The Standard Check Valve vibrates when the pump cycles and is resistant to corrosion. Providing a longer-lasting check valve and the assurance that you can hear your sump pump operating.

The Quiet Check Valve’s spring-loaded flapper design removes noise, resulting in a silent sump pump. Providing a peaceful environment throughout the day, morning and night.

Why Choose Water Line Controls

All of our water level controls and water level control systems are assembled right here in the U.S.A. where we monitor every step of the process.

blank
Written by webtechs

Why Do Sump Pump Float Switches Fail?

Why Do Sump Pump Float Switches Fail?

 

The main mechanical cause of the problems of the deposit of the pump is the exchange problem. Here are some common causes of tank pump float switch failure:

Float Change Frequently, the float falls into the trap between the pump and the reservoir wall and is unable to rise sufficiently to be effective. Due to the pump’s modest vibration during operation, it is able to “pass” through the well’s bottom, assuring buoyancy between it and the well wall.

Sometimes, after so many lifting and lowering cycles, the float switch simply gives up and ceases to respond to the rise and fall of the well’s water level. It frequently stops when the pump is operating. When this occurs, the pump stays on until the fuel burns.

Power outage due to inclement weather is a formula for a flooded basement. The entire tank’s float switch and pump are electrically powered. When the unit is turned off, the pump stops draining water altogether.

Why Is A Float Switch Valuable?

The float switch on a sump pump is the mechanism responsible for turning on and off the sump pump system. It functions using a small, floatable attachment that rises and falls with the sump pit’s water level.

As the water level in the sump pit rises, the float switch is raised. As it reaches a specific height, the mechanism is activated. The sump pump switches off once again as the water level in the sump pit decreases.

When this float switch fails to rise or becomes locked in the “on” state, the problem develops. At certain situations, the sump pump will either fail to turn on or be unable to turn off, eventually causing the motor to overheat and die. Regardless, you can anticipate a basement flood during the next rainfall.

Sump Pump Float Work
Written by webtechs

Choosing The Right Sump Pump

Sump Pump Float Work

Pumps vary widely in quality. Pumps are used in a variety of applications, such as chemical vats, fuel depots, and swimming pools, but each one may present a different set of difficulties. The U.S. Department of Energy suggests the following factors to think about when choosing a pump:

Fluid: Pumps that weren’t designed for the job can be destroyed by chemicals and fuels. Select a pump that is made to handle the fluid’s corrosiveness and consistency to prevent degradation or clogging from slurry or debris. Similar to this, be aware of the fluid’s viscosity to make sure the pump has sufficient force to draw the liquid through.

Calculate the desired flow rate by dividing the total volume by the desired transit time for the liquid. For instance, if a 500-gallon pond requires full circulation once every hour, you should choose a pump with a 500 GPH minimum rated flow rate (gallon per hour).

Although pumps can function in a wide range of temperatures, if you are working with liquids that are hotter than 200°F, make sure the pump is rated for the highest liquid temperature you will be pumping.

Vapor pressure: The force per unit area that a fluid exerts when changing from a liquid to a vapor is known as vapor pressure, and it can be used to reduce the risk of cavitation by making sure the pump is rated for it.

Choosing a Pump from a Variety of Types

You can start comparing your options for pumps once you know the materials they must handle and the capabilities they need. The most typical pump designs and operating principles available today are listed below:

Centrifugal pumps: A centrifugal pump draws fluid into one or more impellers, such as a paddle wheel or propeller, to maintain a steady flow of a large volume of fluid at high speed. It can be used to pump a variety of low viscosity liquids, including those containing solid components like wastewater, and is one of the most popular pumping systems. A wide range of industries, including agriculture, water utilities, industry, power generation, petroleum, mining, and more, use centrifugal pumps.

Diaphragm pumps: Also called membrane pumps, a diaphragm pump is a device that moves fluid by a series of diaphragms moving back and forth. In a cycle, fluid is forced out of one chamber as it enters the other. These pumps are useful for pumping liquids with high solid content or high viscosity, such as chemicals, paints, or syrups, because there are no moving parts within the diaphragm chambers themselves.

Pumps that circulate fluids within a system are used instead of pumps that move liquid from one location to another. In order to ensure that the hot water is evenly distributed with the incoming cold water and to maintain a constant temperature, circulating pumps are frequently used in water heating systems. A circulating pump can also be used to evenly distribute chemicals that have been mixed into a container or to move water around a pond to oxygenate the water.

Pumps for moving oil, fuel, and other materials from one container to another, such as transferring fuel from a tank into large machinery, are known as fuel and oil transfer pumps. Oil transfer pumps are made for use with high viscosity fluids and are toughly constructed for higher flow rates.

Pumps for chemicals: Chemical pumps are made specifically for the creation, use, and disposal of chemicals. They are constructed of corrosion-resistant materials like glass, rubber, plastic, rubberized steel, titanium, and stainless steel. Use a pump made specifically for the chemical you want to pump because different chemicals have different corrosive effects on materials.

Drum pumps: These pumps are designed to help you suction out fluids from drums, barrels, pails, and totes to reduce the risk of spills when pouring the container or to draw fluids out of a heavy container. Hand-powered pumps are useful for low-volume or remote pumping applications where electricity is not available, whereas electric-powered pumps are useful for tasks requiring high volume transfer. A pneumatic pump that runs on compressed air is a good choice if you need higher flow rates than a hand-powered pump and more precise flow control than an electric drum pump without electricity.

Sump pumps are set off automatically once the water level in the sump pit gets to a predetermined height. A homeowner can calibrate the pump to start at any depth they wish by adjusting the float device of the sump pump.

Water runoff and/ or seeping water is collected inside the sum pit. As the water gathers, a float rises as the water level rises. The float has control of an on/ off switch for the pump. Once the float rises to a predetermined height, the pump turns on. The pump continues to function until the float falls low enough to disconnect the switch. The pump is inactive once more until the water level increases again.

Types of Sump Pump Floats

Different types of floats are used by different types of sump pumps. Pedestal pumps will typically have a bulb type float connected to a metal rod that turns on the pump motor’s switch. Other types of pumps utilize floats attached to arms that will raise and lower as the water level rises and lowers. A tethered float is a float that is attached to the pump utilizing a tethering mechanism.

Old Sump Pump Float Working Principle

When the water level rises, the float will rise too. As the float rises the tether steadily releases. The tether is predetermined to start the pump when a specific amount of tether gets released. When the water levels lower, the tether becomes loose and the float falls back to its starting position.

New Sump Pump Float Working Principle

Float switches and water level controls typically start out open, meaning there are no alarms that are required to be activated since the water level is at its lowest.

  1. When the cooling tower stops using the water for its industrial operations, the water level starts to rise. No alarms have been activated up to this point.
  2. When the water level reaches the probes, a signal is transferred between the probes informing the high alarm to activate.
  3. When the high alarm is activated it can be programmed to tell the fill to stop filling up the water.
  4. Finally, when the water reached the predetermined limit, the fill stop kicks in and the process starts all over again.

With correct maintenance, your cooling tower float switches could last for years of operating. A lot of float switch failures typically occur due to degrading, wearing out, or fouling. Cooling tower coatings can safeguard the storage tanks, but what is safeguarding the float switches? Our water level controls can replace your old float switches once and for all and won’t degrade, wear out, or foul, because of any water quality.

Why Choose Water Line Controls

All of our water level controls and water level control systems are assembled right here in the U.S.A. where we monitor every step of the process.

Altitude Valve: What is it and How Does it Work?
Written by webtechs

Altitude Valve: What is it and How Does it Work?

An Altitude Valve is a mechanically operated control that relies on a differential of pressure between inlet and outlet to assume a level of water, and control its flow when the supply pressure becomes much higher than the head developed by the full reservoir or storage tank. Frequently used in supplying water in high-rise buildings, ground storage tanks or reservoirs, they have also traditionally been used in remote areas where modern equipment used to be at a disadvantage due to lack of electricity. Today, with cheap reliable batteries and solar power readily available, an upgrade to modern equipment with proper monitoring and alarm systems is within easy reach. Instead of using an Altitude Valve, use a Paragon Valve with a Waterline Controls Fire Protection unit.

Freezing Temperatures

In many climates low temperatures can be an issue when a mechanical valve is used. While in the past a layer of ice on the water surface could render a float valve inoperative and make a remote altitude type valve seem a good choice, today an electronic sensor can include temperature monitoring and reporting/alarm status when the potential for freezing arises.

Costs

Even smaller water suppliers who used to be concerned with costs of upgrading find that between the lower costs of electronic controls, the lack of maintenance issues or failures, along with remote activity reporting and monitoring, modern electronic sensor level control systems are helping relegate altitude valves to situations where conservation, reliability and supervision are not required.

Complications

Obviously, directly measuring the level of water with a sensor is many times more accurate than a pressure differential assessment. Consideration must also be given to the inlet pressure, to ensure it is always greater than the water level head pressure. Too low a pressure will cause the system to equalize the inlet and outlet pressure, and without a differential pressure, the valve will be stuck, trying to fill but never reaching the max level. With no differential pressure the system fails, with no water flowing in or out of the tank.

Options

Waterline Controls™ Liquid Level Controls Systems can operate from Solar powered panels that produce 30vdc, or a battery system charged via solar panel. All systems can connect to a Fire Panel or building management system for full monitoring and fault reporting, with alarms. Without the maintenance and costs of altitude type controls, with advanced monitoring and reporting, full automation compatibility and extreme reliability, there is no reason not to upgrade to modern reliable systems that take into account our responsibility to properly manage and conserve our limited and important water supply.

 

Sump Pump Float Work
Written by webtechs

How Does a Sump Pump Float Work?

Sump Pump Float Work

Sump pumps are set off automatically once the water level in the sump pit gets to a predetermined height. A homeowner can calibrate the pump to start at any depth they wish by adjusting the float device of the sump pump.

Water runoff and/ or seeping water is collected inside the sum pit. As the water gathers, a float rises as the water level rises. The float has control of an on/ off switch for the pump. Once the float rises to a predetermined height, the pump turns on. The pump continues to function until the float falls low enough to disconnect the switch. The pump is inactive once more until the water level increases again.

Types of Sump Pump Floats

Different types of floats are used by different types of sump pumps. Pedestal pumps will typically have a bulb type float connected to a metal rod that turns on the pump motor’s switch. Other types of pumps utilize floats attached to arms that will raise and lower as the water level rises and lowers. A tethered float is a float that is attached to the pump utilizing a tethering mechanism.

Old Sump Pump Float Working Principle

When the water level rises, the float will rise too. As the float rises the tether steadily releases. The tether is predetermined to start the pump when a specific amount of tether gets released. When the water levels lower, the tether becomes loose and the float falls back to its starting position.

New Sump Pump Float Working Principle

Float switches and water level controls typically start out open, meaning there are no alarms that are required to be activated since the water level is at its lowest.

  1. When the cooling tower stops using the water for its industrial operations, the water level starts to rise. No alarms have been activated up to this point.
  2. When the water level reaches the probes, a signal is transferred between the probes informing the high alarm to activate.
  3. When the high alarm is activated it can be programmed to tell the fill to stop filling up the water.
  4. Finally, when the water reached the predetermined limit, the fill stop kicks in and the process starts all over again.

With correct maintenance, your cooling tower float switches could last for years of operating. A lot of float switch failures typically occur due to degrading, wearing out, or fouling. Cooling tower coatings can safeguard the storage tanks, but what is safeguarding the float switches? Our water level controls can replace your old float switches once and for all and won’t degrade, wear out, or foul, because of any water quality.

Why Choose Water Line Controls

All of our water level controls and water level control systems are assembled right here in the U.S.A. where we monitor every step of the process. The are many reasons to choose Waterline Controls™ for all of your float switch and water level controller needs include:

SIMPLE DESIGN

No moving parts or mechanical floats to break or rust!

BEST TECH SUPPORT

No runaround, no guessing, no stupid answers. You’ll talk to the guy who’s been designing and installing these units for over 20 years.

BUILT TO LAST

Makes it easy to integrate with existing Building Management Systems and has an expected useful life of 15 years.

TOUCH TO TEST

One push of the button starts a complete validation cycle to ensure all systems are working properly.

RELIABLE & ACCURATE

Will not foul, plate, or deteriorate regardless of water quality.